Osalotioman

Fermat’s Little Theorem

If $p$ is a prime number and $a$ is an integer not divisible by $p$, then:

$a^{p-1} \equiv 1 \pmod{p}$


Euler’s Theorem

If $\gcd(a, n) = 1$, then:

$a^{\varphi(n)} \equiv 1 \pmod{n}$

where $\varphi(n)$ is Euler’s totient function.


Chinese Remainder Theorem

If $n_1, n_2, \dots, n_k$ are pairwise coprime, then the system:

\begin{cases} x \equiv a_1 \pmod{n_1}
x \equiv a_2 \pmod{n_2}
\vdots
x \equiv a_k \pmod{n_k} \end{cases}

has a unique solution modulo $N = n_1n_2\cdots n_k$.


Wilson’s Theorem

For a prime $p$:

(p-1)! \equiv -1 \pmod{p}


Lagrange’s Four Square Theorem

Every natural number can be written as the sum of four integer squares:

n = a^2 + b^2 + c^2 + d^2

for some integers $a, b, c, d$.


Dirichlet’s Theorem on Primes in Arithmetic Progressions

If $\gcd(a, d) = 1$, then the arithmetic sequence:

a, a+d, a+2d, a+3d, \dots

contains infinitely many prime numbers.


Bertrand’s Postulate

For every integer $n > 1$, there exists at least one prime $p$ such that:

n < p < 2n